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Chapter 2
Human Physiology in the Heat

Luke N. Belval and Ollie Jay

Abstract Safety and performance during exercise and physical activity in the heat 
are limited by the human body’s physiological ability to balance heat gain and heat 
loss. Circumstances where heat gain from internal or external sources outweighs the 
ability to dissipate it can lead to dangerous increases in body temperature. Humans 
possess an ability to adapt to exercise in warm environments and minimize the del-
eterious effects through heat acclimatization. In situations where human physiology 
cannot overcome thermal challenges, exertional heat illnesses can manifest. These 
exertional heat illnesses can range from relatively benign to potentially fatal when 
left untreated. Technologies, techniques, and strategies to mitigate the consequences 
of exercise in warm environments should consider the existing physiological mech-
anisms to successfully promote health and maximize performance.

 Introduction

From an evolutionary perspective, humans’ ability to adapt to the thermal environ-
ment has allowed our species to thrive. The mechanisms that allowed for persistence 
hunting, the practice of hunting animals much larger and faster than humans by 
out-enduring them, have greatly shaped our physiology [1]. While this physiology 
allows us to succeed where other species may fail, thermal environments still exist 
that humans cannot overcome. Whether it is an internal or external limit, the human 
body can be restricted by the amount of heat it is able to dissipate. By understanding 
these limits, we can identify strategies and technologies to further human capabili-
ties for exercising in hot environments.
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This chapter will cover the biophysical and physiological mechanisms the human 
body employs for heat gain and dissipation. This examination of heat balance is 
fundamental to the understanding of the thermoregulatory challenges faced by ath-
letes, laborers, and war fighters. We will also examine how the body adapts to ther-
mal environments over time through heat acclimatization, a powerful tool in 
prevention and performance enhancement. Finally, we will discuss the dysfunctions 
of the thermoregulatory system and their manifestations as exertional heat 
illnesses.

 Human Heat Balance

From a fundamental perspective, critical elevations in human body temperature 
(hyperthermia) arise from a sustained inability to balance the amount of heat gener-
ated from internal metabolic processes with a sufficient amount of heat dissipation 
from the skin surface to the surrounding environment.

In its simplest form, the human heat balance equation (Eq. 2.1) states that in 
order to prevent the storage of heat energy inside the body (i.e., S = 0) of zero, the 
rate of metabolic heat production (Hprod) must be offset by an equal rate of combined 
heat loss (Hloss), which is almost exclusively derived from heat transfer pathways at 
the skin surface:

 
H H Sprod loss= ±

 
(2.1)

To obtain a better understanding of the various physiological and biophysical 
mechanisms that lead to hyperthermia, Hprod and Hloss can be broken down into the 
following principal components.

 Metabolic Heat Production

By definition, Hprod is the difference between metabolic energy expenditure (M) and 
the amount of this energy that is converted into mechanical work (W). As a rule, 
humans are very inefficient at this conversion, typically resulting in a high ratio of 
M to W (>3:1). Cycling is the most mechanically efficient activity with 30% of M 
used to create W [2] and the remaining ~70% liberated as heat energy inside the 
body that must subsequently be transferred to the skin surface and dissipated to 
prevent an increase in S. At the other end of the efficiency spectrum is running on 
flat ground, which creates approximately zero net external work as the propulsion 
and breaking forces of gait yield equivalent positive and negative work [3]. As such, 
all metabolic energy during running on a flat surface is released as heat (i.e., 
Hprod = M). The elevation in M during exercise is mainly determined by the rate at 
which oxygen is consumed (VO2) with every 1  L of VO2 per minute yielding 
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approximately 21  kJ of energy per minute. It follows that activities requiring a 
greater VO2 result in a higher Hprod. For example, military tasks such as intermittent 
marching for 3 h with standard combat gear and weapon (total load, ~25 kg) and 
digging soft sandy ground to a depth of 1 m at a self-regulated pace result in a VO2 
of 1.7–1.8 L·min−1 [4], which is equivalent to a M of 36–38 kJ·min−1. In a sports- 
related context, elite marathon runners sustain VO2 levels of ~3.5 L·min−1 and M of 
~74 kJ·min−1 [5].

 Combined Heat Loss

Heat transfer at the skin surface to the surrounding environment can be split into 
two primary subcomponents: dry heat transfer (Hdry) and evaporative heat loss 
(Hevap). As such, the simplest form of the human heat balance equation can now be 
reexpressed as:

 
H H H Sprod dry evap= +( ) ±

 
(2.2)

While Hevap almost exclusively arises from evaporation of sweat from the skin 
surface, Hdry occurs by a combination of three different pathways – conduction (K), 
convection (C), and radiation (R):

 
H C R K H Sprod evap= ± ±( ) + ±

 
(2.3)

Dry Heat Transfer: K is the transfer of heat from direct contact with a solid sur-
face and under most circumstances is considered negligible from a whole-body heat 
balance perspective [6]. C is the transfer of heat promoted by the movement of a 
fluid, usually air, and is proportional to (i) the difference in temperature between the 
air and the skin and (ii) the rate at which air passes across the skin [7]. Skin tempera-
ture is typically ~35°C in a fully vasodilated state; therefore when air temperature 
exceeds this value, convective heat loss becomes heat gain, contributing to an 
increase in S. R is the transfer of electromagnetic energy from a relatively warm 
body to a cooler one. In outdoor environments, the sun is usually the greatest source 
of radiant energy. R is proportional to the temperature difference between mean 
radiant temperature, derived using a black globe thermometer and air velocity, and 
mean skin temperature. R is also determined by the effective radiative area of the 
body and is altered by posture and the orientation of the person relative to the radia-
tion source. R often serves as an environmental heat gain when skin temperature is 
lower than mean radiant temperature, which in the summertime can be more than 
10°C greater than ambient air temperature (measured in the shade).

Evaporative Heat Loss: The rate of evaporation from the skin surface is deter-
mined by the absolute water vapor pressure difference between the skin (primarily 
dictated by eccrine sweating) and air. For the purposes of whole-body heat balance, 
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negative evaporative heat loss (i.e., condensation) is negligible. The evaporation of 
sweat is also promoted by an increased rate of air flow across the skin, which can 
arise from a combination of self-generated (from physical movement) and ambient 
air flow. Humans have a finite capacity for evaporative heat loss, with the maximum 
rate of evaporation (Emax) of a person determined by the fraction of body surface 
area that they can physiologically cover with sweat. This relative value is called 
“skin wettedness” (ω) [8] and ranges from a minimum value of 0.06 at rest with no 
thermoregulatory sweating to a maximum value with maximal sweating of ~0.75–
0.85 for an unacclimated person and 1.00 for a fully heat acclimated person [6]. As 
ω rises toward these maximal values, the volume of sweat that evaporates relative to 
what is produced (i.e., sweating efficiency) decreases due to a limited environmen-
tal humidity gradient [8]. For every gram of sweat that does evaporate from the skin, 
2.426 kJ of latent heat is liberated from the body [9]. The same sweat rate in a humid 
environment will therefore result in a lower evaporative heat loss because a greater 
proportion of sweat drips off the body before evaporating. For example, a whole- 
body sweat rate of 15 g·min−1 in an arid (dry) climate yielding a sweating efficiency 
of 90% will result in a Hevap of 32.8 kJ·min−1, whereas the same sweat rate in a tropi-
cal (humid) environment with a sweating efficiency of 50% will result in a Hevap of 
18.2 kJ·min−1.

For all heat loss components (dry and evaporative), the absolute amount of heat 
transfer for a particular person is determined by body surface area. That is, a person 
with a larger surface area, which is predominantly determined by height and weight, 
will have a greater absolute heat loss. Clothing also heavily influences dry and evap-
orative heat losses. In a cold environment, ensembles with large amounts of insula-
tion limit convective and radiative heat loss, whereas in an environment with a high 
radiant heat load, these properties protect the wearer from excessive environmental 
heat gain and potential burn injuries. Clothing with a high evaporative resistance 
(e.g., nuclear, biological, chemical suits or American football pads) greatly reduces 
Emax under a fixed set of environmental conditions by slowing the rate at which 
water vapor passes through the clothing and can substantially add physiological 
heat strain, particularly when such clothing is worn during physical activity.

 Body Heat Storage

If at any time Hprod is not matched by an equal amount of Hloss (i.e., the sum of Hdry 
and Hevap), a change in body heat storage (S) will occur. An accumulation of heat 
energy inside the body (i.e., a positive S value), as is often observed during exercise/
physical activity in a hot environment especially when clothing with a high evapora-
tive resistance is worn, results in a rise in internal body temperature. For a given 
person, a greater heat storage leads to a greater rise in internal body temperature; 
however, between people of different body sizes, a smaller individual will get hotter 
for a given S value [10]. For example, for a person weighing 65 kg, an S value of 
+320 kJ would cause a 1.4 °C rise in mean body temperature, whereas the same S 
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value for 95  kg person would only lead to a rise in mean body temperature of 
0.95°C. The average specific heat capacity of the body (Cp) is typically assumed to 
be 3.47 kJ·kg−1·°C−1; however, because the Cp of fat is lower (2.97 kJ·kg−1·°C−1) 
than the muscle (3.64 kJ·kg−1·°C−1), these elevations in mean body temperature for 
a fixed S should be altered by the amount of body fat. While large differences in 
body fat (~20%) do seem to result in slightly higher rises in core temperature 
(~0.2°C), adipose tissue does not seem to interfere with the capacity to dissipate 
heat [11]. Indeed, while fat does serve as an insulator during cold exposure, a pro-
nounced peripheral vasodilation of the skin during exercise and heat exposure ren-
ders these insulating properties ineffectual, and sweating capacity does not seem to 
be altered by the presence of body fat. This primarily can be attributed to the super-
ficial nature of skin blood vessels relative to adipose tissue. Of note, however, is that 
extremely large individuals with a body surface area of >2.5 m2 may exhibit reduc-
tions in ωmax and, therefore, reduction in Emax secondary to a lower sweat gland 
density [12].

 Compensable and Uncompensable Heat Stress

During exercise/physical activity, Hloss is augmented to balance elevations in Hprod, 
primarily through increases in eccrine sweating and thus Hevap. The amount of evap-
orative heat loss required (Ereq) to attain an S of 0 (i.e., heat balance) is determined 
by:

 
E H C R Kreq prod= ± ±( )-

 
(2.4)

If Ereq is possible, the imbalance between Hprod and Hloss is transient, and core 
temperature will rise but then reach an elevated plateau (compensable heat stress; 
Fig. 2.1a–b). However, if Ereq is greater than Emax, either because Hprod is very high 
or the prevailing climate and/or clothing worn does not permit a sufficiently high 
rate of evaporation, (i) Hloss fails to match Hprod, (ii) S continually occurs, and (iii) 
internal body temperature rises uncontrollably (i.e., uncompensable heat stress; 
Fig. 2.1c–d). This latter condition can prove to be potentially dangerous as eventu-
ally critically high levels of core temperature can be reached and the risk of heat- 
related illnesses rapidly develops.

 Heat Acclimatization

Humans possess a profound ability to adapt to hot environments, greater than any 
other environment they encounter. In some circumstances, situations that create 
uncompensable heat stress can become compensable through repeated exposure. 
These physiological changes, labeled heat acclimatization, greatly increase the 
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capacity for exercise in the heat [13]. The magnitude of heat acclimatization is so 
great that a lack of heat acclimatization is largely considered to be a risk factor for 
exertional heat illnesses.

The adaptations associated with heat acclimatization occur primarily in the car-
diovascular and thermoregulatory systems through 10–14 days of repeated exercise 
heat stress [14]. It is also possible to induce these processes from simulated hot 
environments or clothing and equipment that inhibits Hloss; however, in these artifi-
cial situations, the changes are labeled heat acclimation [15].
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Fig. 2.1 (a–d) Examples of human heat balance status (left) and concomitant changes in core 
body temperature (right) during compensable (top) and uncompensable (bottom) heat stress 
scenarios
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 Cardiovascular Changes

During exercise in the heat, the body must maintain adequate perfusion to the exer-
cising muscles, the visceral organs, the brain, and the skin vasculature. Over the 
course prolonged exercise, where sweat fluid losses decrease the total plasma vol-
ume available, cardiovascular drift occurs as the body is not able to provide ade-
quate perfusion to all of the above locations [16]. Cardiovascular drift occurs 
through a compensatory increase in heart rate to maintain cardiac output despite a 
decreasing stroke volume.

The cardiovascular adaptations that occur during heat acclimatization directly 
combat cardiovascular drift. Aldosterone and arginine vasopressin-induced fluid 
retention lead to an increase in total body water of 2–3 L (5–7%) [17]. Net increases 
in total intravascular protein facilitate fluid movement from the interstitial to the 
intravascular space, resulting in plasma volume expansion of 4–15% [17]. Therefore, 
to counteract the changes typically seen in cardiovascular drift, heart rate decreases 
via decreased myocardial autonomic tone and stroke volume increases to maintain 
a constant cardiac output at a given workload.

 Thermoregulatory Changes

While the cardiovascular changes that occur through heat acclimatization allow for 
increased work output, they do not directly support an increased ability to maintain 
heat balance during exercise heat stress. Heat acclimatization decreases resting 
internal body temperature, theoretically creating a greater capacity for S during 
exercise [18]. In addition, skin blood flow during exercise increases, supporting 
greater Hdry [17].

Chiefly, the changes that occur in the thermoregulatory system’s effector organs, 
eccrine sweat glands, support a further Hprod and diminished Hloss. In total, acclima-
tized individuals have been shown to have Hevap increase by 11% [19]. Sweat glands 
not only begin excreting at lower internal body temperatures in heat acclimatized 
individuals (decreased sweat onset), they will also excrete more (increased sweat 
rate) at a faster rate (increase sweat sensitivity) [17].

While these changes in sweat onset, rate, and sensitivity increase the capability 
for the Hevap, it also increases the fluid losses from sweat and increases the rate of 
dehydration. To a certain extent, the relationship between thirst and fluid needs also 
improves to diminish this effect [17]. To prevent concurrent large losses of sweat 
electrolytes due to greater sweat excretion, eccrine sweat glands increase electrolyte 
absorption along with increased electrolyte reabsorption in the kidney [18].
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 Benefits of Heat Acclimatization Beyond Heat Stress

The ability to perform a given amount of exercise with less physiological strain is a 
hallmark sign of the successful completion heat acclimatization process. 
Furthermore, the nature of the adaptations induced by heat acclimatization lead to 
changes that benefit exercise performance in both warm and cold environments 
[13]. Improvements in VO2 and cycling power at a fixed heart rate are commonly 
observed following heat acclimatization [17].

 Heat Acclimatization Protocols

Many strategies exist to induce heat acclimatization, ranging from short-term high 
intensity programs [20] to passive programs that utilize a sauna or hot water immer-
sion post-exercise [21]. The most commonly studied protocols involve 90–120 min 
of treadmill walking in a warm environment for 10–14  days [18].What remains 
consistent is that the thermoregulatory and cardiovascular system must be stressed 
in order for adaptations to occur [22]. Furthermore, heat acclimatization is not per-
manent; some intermittent exposure to exercise heat stress is required to maintain 
heat acclimatization status [19]. From an athletic standpoint, American football has 
developed some of the most comprehensive policies for heat acclimatization, 
wherein exercise duration, intensity, and equipment worn are all gradually phased 
in over the first 2 weeks of practice [23]. Similar concepts can be utilized across the 
physical activity spectrum to reduce heat stress and improve performance.

 Exertional Heat Illnesses

As a manifestation of dysfunctions in the thermoregulatory system, exertional heat 
illnesses constrain the ability to perform physical activity or labor. Exertional heat 
stroke may be the only fatal heat illness; however, even minor conditions can limit 
the ability to successfully compete, operate, or work in warm environments. While 
exertional heat illnesses cover a wide spectrum of severities, they do not exist in a 
continuum. It is a commonly propagated myth that a more severe heat illness is 
predicated on the previous presences of less severe one (Table 2.1).
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 Minor Heat Illnesses

The minor heat illnesses, heat edema and miliaria rubra, are not directly limiting to 
exercise in the heat but rather are caused by heat exposure. Heat edema is the inflam-
mation of the extremities caused by pooling of fluid in the interstitial space [24]. As 
it is a relatively benign one of the only treatments is to remove the heat exposure.

Miliaria rubra, typically called a “heat rash” or “prickly heat,” is the presence of 
small erythematous papules caused by clogged sweat glands [24]. This condition 
also corrects itself to a certain extent when the heat exposure is removed, but proper 
hygiene can help limit the recurrence. Since the sweat glands become clogged in 
miliaria rubra, Hevap may be diminished leading to an increased risk of more severe 
exertional heat illnesses.

 Heat Cramps or Exercise-Induced Muscle Cramps

The current understanding of the etiology of muscular cramps indicates that heat 
exposure is not a primary cause of cramps during exercise. Rather, it appears that 
most cramps occur as a result of neural fatigue, which may be exacerbated by either 
the increased physiological demands of exercise in the heat or sweat electrolyte 
losses [25]. This type of muscular cramp typically appears in a localized, visible 
fashion and can be very painful. Most instance of cramping respond well to stretch-
ing and rest. Individuals who repeatedly cramp during exercise in warm environ-
ments should monitor their hydration and sodium intake as cramping may be 
indicative of a fluid or electrolyte imbalance [26].

Table 2.1 Exertional heat illness prevention strategies and physiological processes they affect

Strategy Physiological process

Increase frequency and duration of rest breaks Increase Hloss

Decrease rate of Hprod

Gradually increase exercise intensity and equipment Increase Hevap through heat 
acclimatization

Identify supplements and drugs that affect 
thermoregulation, and limit their use

Decrease Hprod from thermogenic 
substances

Encourage adequate hydration Maintain adequate skin perfusion for Hdry, 
and maximize Hevap

Limit exercise with febrile illness Increase capacity for S
Improve physical fitness Decrease relative Hprod

Modify activities based on environmental conditions Decrease environmental Hgain

Abbreviations: Hdry dry heat transfer, Hevap evaporative heat loss, Hgain combined heat gain, Hloss 
combined heat loss, Hprod metabolic heat production, S body heat storage
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 Heat Syncope

Postural hypotension from either prolonged standing or a sudden of cessation of 
exercise in warm environments defines heat syncope. The condition is often exacer-
bated by dehydration, which further contributes to poor venous return [24]. Syncope 
that is not a collapse associated with a more serious exertional heat illness is typi-
cally rapidly reversed by placing the patient in Trendelenburg’s position. This 
supine position with the feet elevated 15–30 degrees above the head coupled with 
fluid replacement allows for a normalization of central blood pressure and facilitates 
a rapid recovery [27].

 Heat Exhaustion

Heat exhaustion is primarily a diagnosis by exclusion. Broadly defined as the inabil-
ity to continue exercise in the heat, the fundamental cause of collapse from heat 
exhaustion is cardiovascular insufficiency [28]. The individual with heat exhaustion 
will exhibit an elevated body temperature, but will not have persistent central ner-
vous system dysfunction. Care for heat exhaustion includes removing the patient 
from exercise and any heat. It may also be beneficial to provide some cooling [27]. 
In cases where patients do not rapidly improve, healthcare providers should evalu-
ate for exertional heat stroke.

 Exertional Heat Stroke

Exertional heat stroke is the most severe of the exertional heat illnesses and is a 
medical emergency. Contrasted to classical heat stroke, which normally occurs in 
individuals with compromised thermoregulatory systems during heat waves, exer-
tional heat stroke is caused by exercise-induced hyperthermia. Most cases occur in 
a warm environment; however, cases have been reported in cooler conditions where 
sufficient exercise stress dangerously elevates internal body temperature.

The current understanding of exertional heat stroke pathophysiology is that 
hyperthermia induces leakage of endotoxin from the gastrointestinal tract into the 
systemic circulation, causing acute kidney and liver failure, rhabdomyolysis, and 
disseminated intravascular coagulation [29, 30]. Heat-shock proteins, chaperone 
molecules within the body, demonstrate a limited ability to minimize the damage 
for short durations of extreme hyperthermia [31].

The risk factors for exertional heat stroke can be dichotomized as either intrinsic, 
internal to the individual, or extrinsic, a factor imposed on the individual. Intrinsic 
risk factors can further be delineated as temporary or permanent. Poor fitness, 
febrile illness, and sleep deprivation are all risk factors that may preclude  individuals 
from safely exercising in the heat until they are corrected [27, 32]. Meanwhile indi-
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viduals with certain genetic factors (e.g., malignant hyperthermia), taking drugs or 
supplements that affect thermoregulation, or who are overweight should be closely 
monitored during periods of intense exercise [33, 34].

Extrinsic risk factors include both organizational and environmental compo-
nents. From an organization standpoint, the risk of exertional heat stroke can be 
minimized by changing activities to parts of the day, providing more frequent and 
longer rest breaks and enacting heat acclimatization protocols [23, 27]. In most 
cases, the environmental risk factors for exertional heat stroke cannot be modified 
but rather monitored. Conditions with high ambient temperatures, high humidity, 
and direct sunlight exposure increase the likelihood of heat gain from the environ-
ment. Abnormally extreme conditions may require activity modification to allow for 
participants to safely complete their tasks [35].

The two pathognomonic criteria of exertional heat stroke are an internal body 
temperature greater than 40.5 °C and end organ dysfunction, typically manifesting 
as neuropsychiatric dysfunction [27]. A wide variety of conditions from concussion 
to hypoglycemia also display neuropsychiatric dysfunction, making an accurate 
assessment of body temperature crucial for exertional heat stroke diagnosis. 
Furthermore, some exertional heat stroke patients have a lucid interval where cen-
tral nervous system dysfunction is not immediately obvious. The only field expedi-
ent measure of body temperature that has been validated for exercise-induced 
hyperthermia and exertional heat stroke diagnosis is a rectal temperature [36–39]. 
Other temperature modalities may falsely indicate normothermia, delaying appro-
priate treatment.

Survival from exertional heat stroke requires that the extreme state of hyperther-
mia is reversed before irreversible organ damage occurs. Inappropriate, ineffective, 
or absent treatment is deadly for the exertional heat stroke patient [40]. As stated 
above, the body has a limited ability to tolerate extreme hyperthermia; optimal 
prognoses from exertional heat stroke occur when the body temperature is reduced 
shortly after collapse [41]. The most effective treatment for exertional heat stroke 
has been found to be cold-water immersion [42]. When cold-water immersion is 
initiated shortly after the patient collapses, survival is likely [43]. In more remote 
situations, tarp-assisted cooling may be used as an adjunct for cold-water immer-
sion [44, 45]. Ice packs in the axillary and groin or misting water with fans are not 
effective cooling modalities for an exertional heat stroke patient [46].

 Conclusion

In summary, human physiology dictates the limits of safety and performance 
during exercise in the heat. Situations where excessive heat gain or limited heat 
loss create uncompensable heat stress can lead to performance decrements or 
exertional heat illnesses. Overall, the strategies to mitigate heat stress for ath-
letes, laborers, and war fighters should focus on these physiological limitations 
while utilizing the body’s own adaptations to maximize safety and optimize per-
formance in the heat (Table 2.1).
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